	Tolstikhina	A Marka	PA 77T31
n ek		USSR/Geology Freezing Rock Formation	Mar 1948
	• • •	"The Effect of Freezing in the Sou- Region," M. M. Tolstikhina, 1 p	thern Lake Onega
		"Priroda" No 3	
		Describes boulder fields being for subject region.	ned by plantation in
		FDB	
		en e	÷
.	•		

KAMENSKIY, Grigoriy Mikolayevich [deceased]; TOISTIKHINA, Matil'de
Moiseyevna; TOISTIKHIN, Westor Ivanovich; MAKSIMOVICH, G.A.,
prof., retsenzent; SHAGOTANETS, A.M., prof., retsenzent;
OVCHINNIKOV, A.M., prof., nauchny red.; FILIPPOVA, B.S.,
red.izd-ve; GUROVA, O.A., tekhn.red.

[Hydrogeology of the U.S.S.R.] Gidrogeologiia SSSR. Moskva,
Gos.nauchno-tekhn.izd-vo lit-ry po geol. i okhrane nedr,
1959. 365 p.

(Water, Underground)

(Water, Underground)

BUGROVA, E.M.; KAKHANOVA, L.P.; KONDITEROV, V.N.; TOLSTIKOVA, N.V.; TPAVINA, T.F.

Conditions governing the sedimentation in Badkhyz in the Palengene. Trudy VSEGEI 109:238-263 '63. (MIPA 17:7)

TOLSTIKOVÁ, Nadezhda Vasil'yevna; KOHOBKOV, I.A., doktor geol.miner. nauk, otv. red.

[Alay and Turkestan mollusks in Badkhyz] Molliuski alaiskikh i turkestanskikh sloev Badkhyza. Moskva, Nauka, 1964. 121 p. (MIRA 17:9)

Manage acres of Territoria	Boundary between the Fackbyz and Namakcarskaya corizons to
	Badkhyz. Trudy V.EGM: 109:193-195 (63. (Hills: 17.7)

Unsolved	problems, Fin. SSS (Kazakhstan-	SR 19 no. 7:53-57 -Internal revenue	' J1 '58. ())	MIRA 11:8)

TOLSTIKOV, A. Rrgent problems. Fin. SSSR 17 no.5:53-58 My '56. (MLRA 9:8) (KazakhstanRevenue)	13R001756120007-2	
Rrgent problems. Fin. SSSR 17 no.5:53-58 My 156. (MTRi 9:8)		
Rrgent problems. Fin. SSSR 17 no.5:53-58 My 156. (MTRi 9:8)		
Rrgent problems. Fin. SSSR 17 no.5:53-58 My '56. (MTRi 9:8)		
	reno in me	

TOLSTIKOV, A.I.

"Opyt Proek tirovaniya, Naladki i Ekspluatatsii Pnevmotslakoudaleniya V Promyshlennykh Kotel'nykh," Proceedings of a Conference on Problems of Ash Removal, Ash and Slag Removal, and Ash and Slag Utilization, (Trudy Konferentsiya Po Voprosam Zoloulavlivaniya, Shlakozoloulavlivaniya I Shlarozoloispol'Zovaniya). U.S.S.R. Gosenergoizdat (Moscow:.. Gosenergoizdat, 1955, 160pp.; abstr. in Teploenergetika (Heat Pur Engng, Moscow), June 1956, 64). There are ten papers on atmospheric pollution, flue gas cleaning, cyclones, instrumentation, pneumatic removal of ash, ash handling, and the use of ash for heat insulation and construction.

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

106 > HKUV, MI.

AID P - 3070

Subject : USSR/Electricity

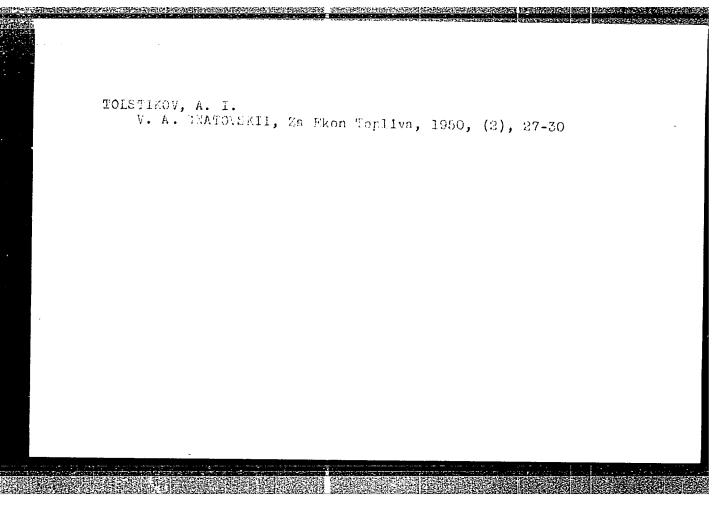
Card 1/1 Pub. 29 - 4/29

Authors : Tolstikov, A. I., and Rysakov, N. F., Engs.

Title : Pneumatic removal of slag and ashes from the boiler room with layer

burning of fuel

Periodical: Energetik, 7, 8-10, J1 1955

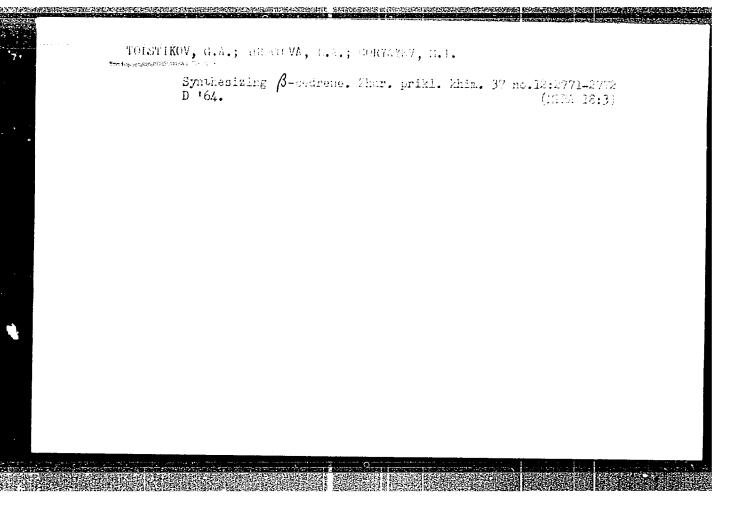

Abstract : The authors describe an installation of three 30 t/hr boilers

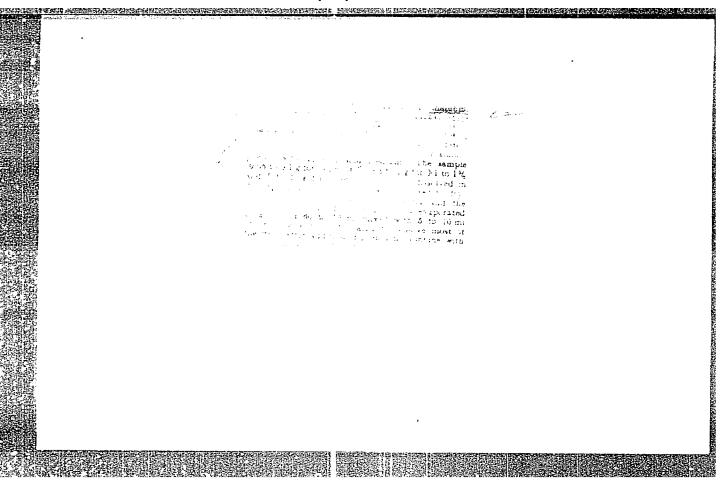
operating on lignite coming from Chelyabinsk and Korkinsk. The traveling grate-stokers are of the BTsR type. The pneumatic removal of slag and ashes was built according to the design of the Uralenergomontazh. The authors explain in detail the functioning

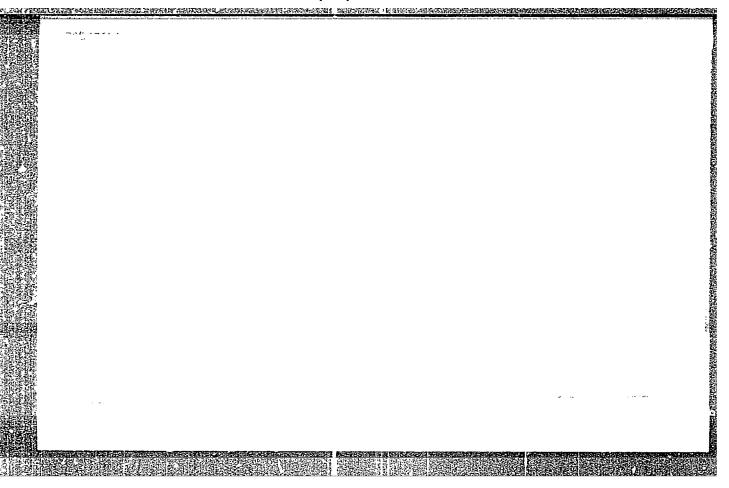
of this arrangement. Six drawings.

Institution: None

Submitted : No date


TOLSTIKOV, G., prepodavatel'.


Improve the training of mine technicians. Mast. ugl. 7 no.10:27


0 '58.(MIRA 11:11)

1. Golubovskiy vecherniy gornyy tekhnikum.

(Mining engineering--Study and teaching)

507/79-28-8-23/66 Goryayev, M. I., Volkova, 7. S., Tolstikov, G. S. AUTHORS: TITLE: On the Problem of Hydrogen Bonds in Meconic Acid (K voprosu o vodorodnoy svyami v mekonovoy kislote) Zhurnal obshchey khimii, 1958, Vol. 28, Nr 8, pp. 2102-2107 FMRIODICAL: (USSR) ABSTRACT: The structure of meconic acid (mekonovaya kislota) permits with good probability to assume the presence of an intremelecular hydrogen bond. The problem is basically of which type the latter is, of type (I) or (II): (I)(II)Card 1/3

On the Problem of Hydrogen Bowls in Meconic Acid SOV/79-28-8-23/66

As is known (Refs 1-3), the presence of an intramolecular hydrogen bond in the molecule which contains a hydroxyl and a carboxyl group in the orthoposition causes a considerable change in the behavior of these groupings. No anomaly is detected in the molecular weight of phenols which contain this bond when they are determined in a neutral solvent. i.e. no reduction of the acidity or a complication of the ester formation. The participation of the carboxyl group in the intramolecular hydrogen bond leads to the increase of the acidity, to a complication of the ester formation, and to a facilitation of the decarboxylation. On the strength of this position the authors investigated several derivatives of the 3-oxy-4-pyrons all of which were obtained from the meconic acid which was produced from the wate products of opium production, the "meconates". A stable intramolecular hydrogen bond was found to exist in meconic acid. This bond is an ingredient of a six-membered cycle. The dissociation constants of meconic acid, of comenic acid (komenovaya kislota), and of pyromeconic acid according to the potentiometric titration were determined. The ester of 3-methoxy-4-pyrone-6-derboxylio acid was obtained which is not yet described in the publications. Figure 1 gives

少少以为此次有关的形式和特别的**是**实现的大型的现在分词

Card 2/3

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

On the Problem of Hydrogen Bonds in Meconic Acid

SOY/73-28-8-25/66

the scheme of the molecule of the motionic acid with the mutual distance of the atoms. There are ϕ figures, 2 tables, and

12 references, 7 of which are Soviet.

ASSOCIATION:

Kezakhskiy gosudarstvennyy universitet

(Kazakh in State University)

SUBMITTED:

January 22, 1958

Card 3/3

GLADYSHEV, V.P.; TOLSTIKOV, G.A.

Polarographic reduction of meconic acid on a mercury electrode.

Izv.AN Kazakh.SSR.Ser.khim. no.1:47-54 '59. (MIRA 13:6)

1. Kazakhskiy gosudarstvennyy universitet i Institut khimicheskikh nauk AN KazSSR.

(Meconic acid)

GORYAYEV, M.I.; IGNATOVA, L.A.; TOLSTIKOV, G.A.

Ultraviolet absorption spectra of 2,4-dinitrophenylhydrazones of certain terpenes. Izv.AH Kazakh.SSR.Ser.khim. no.1:85-86 '59.

(MIRA 13:6)

(Terpenes--Spectra) (Hydrazones--Spectra)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

5 (3). AUTHOR:

Tolstikov, G. A.

SOV/79-29-7-60/83

TITLE:

Ultraviolet Absorption Spectra of 3-Oxy-J-pyrone Derivatives (Ultrafioletovyye spektry pogloshcheniya proizvodnykh 3-oksi-

-f-pirona)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 7, pp 2372 - 2377

(USSR)

ABSTRACT:

Little has been published in publications on the spectroscopy of J-pyrones (Refs 1-3). However, the oxonium compounds of the same pyrones have been investigated in greater detail (Refs 4-6). The absorption spectra of J-pyrones must consist of highly intense bands characterizing electron transitions in the conjugated π -bond system (π - π [#] transitions) and of weak bands caused by n- π [#] transitions in the carbonyl group. The author studied the absorption spectra of J-oxy-J-pyrone and its derivatives: of the methoxy-J-pyrone of comenic acid and its ethyl ester, of the ethyl ester of methoxycomenic acid, of meconic acid and its diethyl and triethyl ester. These compounds were recrystallized several times until their melting points were constant. The spectra of the aqueous, ether, and n-heptane

Card 1/3

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

Ultraviolet Absorption Spectra of 3-Oxy-j-pyrone SOV/79-29-7-60/83

solutions of these substances were taken by means of the spectrophotometer SF-4. Special attention was devoted to the investigation of the nature of the intramolecular hydrogen bonds in the various oxypyrone derivatives as well as to the effect of the solvent on their absorption spectra. No reference was made to these problems in earlier publications. In order to eliminate the effect of hydroxyl in the carboxyl groups, the acids were converted to their esters. Evaluation of the spectra yielded the results given in a table and figures 1-4. The stability of the intramolecular hydrogen bond was found to decrease in the following order: meconic acid > oxypyrone > comenic acid. Hitherto the intramolecular hydrogen bond in meconic acid (I), comenic acid (II), and oxypyrone (III) has been represented by the formulas (I), (II), and (III). These structures of the contract o tures had been derived from a comparison of the reactivity of the hydroxyl and the carboxyl groups of these acids (Ref 7). The results of the present investigation, described in greater detail in the report, made a more exact treatment of this problem possible. The author thanks Yu. A. Kushnikov for valuable

Card 2/3

Ultraviolet Absorption Spectra of 3-0xy-y-pyrone SOV/79-29-7-60/83

advice. There are 4 figures, 1 table, and 10 references, 4 of

ASSOCIATION: Institut khimicheskikh nauk Akademii nauk Kazakhskoy SSR

(Institute of Chemical Sciences of the Academy of Sciences,

Kazakhskaya SSR)

SUBMITTED:

July 29, 1958

Card 3/3

Compounds entering late the composition of essential oils. Last 1:
Isomerization of each of entire onide. Zhur. ob. khim. 31 no. 2:6/4652 F '61. (NITH 14:2)

1. Institut khimicheskikh mark AH Fanckhekoy SSR. (Coderne)

8/080/61/034/004/011/012 A057/A129

AUTHORS:

Goryayev, M. I., Tolstikov, G. A., Yel'chibekova, L. A.

TITLE:

On the preparation of monoperphthalic acid

PERIODICAL:

Zhurnal prikladnoy khimii, v. 34, no. 4, 1961, 946 - 947

TEXT: In the present paper a method for preparation of monoperphthalic acid is described, based on an improvement of the method presented by E. Royals and L. Harrell (Ref. 3: J. Am. Chem. Soc., 77, 3405, 1955). Monoperphthalic acid is used, as well as perbenzoic acid, for epoxidation of unsaturated compounds. Monoperphthalic acid is usually prepared by H. Boehme's method (Ref. 1: Ber., 70, 379, 1937), but this method has some disadvantages. Royals and Harrell's method is based on mixing phthalic Aphydride, 30 % hydrogen peroxide and diethylether at room temperature for 24 hours. The present authors tested this method and observed that the indicated yield of 65 % can be attained already after a time of mixing of only 6 hours. If the procedure is carried out at 30 - 35°C a yield of 65 - 70 % is obtained in 3 - 4 hours. Increasing the used hydrogen peroxide amount to a double amount makes possible to obtain monoperphthalic acid with a 63 - 65 % yield after mixing for 1 hour at 30 - 35°C. The following proce-Card 1/3

On the preparation of monoperphthalic acid

S/080/61/034/004/011/012 A057/A129

dure was carried out in the present experiments: After mixing the three components for a certain time at a given temperature (see table) the ethernal layer was washed 3 - 4 times with 40 % ammonium sulfate solution and dried with calcinated sodium sulfate. The amount of active oxygen was determined iodometrically. Extraction of the aqueous layer with ether increase the monoperphthalic acid yield by 4 - 5 %. In all experiments 30 g (0.2 mole) phthalic anhydride and 200 ml ether were used. Monoperphthalic acid obtained by one of the procedures (see table) was used for the oxidation of cedrene by the following method 40.8 g (0.2 mole) of carene was oxidized at 0°C in the ethereal solution of monoperphthalic acid, containing 3.50 g (0.22 mole) of active oxygen. The mixture was left to stand at 0°C for 24 hours, the precipitated phthalic acid was filtered off and washed with ether, then the ethereal solution was washed several times with 5 % NaOH solution and subsequently with water, and was dried with sodium sulfate. After vacuum distillation 39.7 g (90 %) of cedrene oxide with a boiling point of 121 - 121.5°C (5 mm), $n_{\rm b}^{\rm CO} = 1.4962$, $d_{\rm b}^{\rm CO} = 1.0032$, $[{\rm CC}]_{\rm b}^{\rm CO} = 81.2^{\rm C}$ was obtained. There is 1 table and 4 references: 2 Soviet-bloc and 2 non-Soviet-bloc.

SUEMITTED:

July 16, 1960

Card 2/3

GORYAYEV, M.I., akademik; TOLSTIKOV, G.A.

Synthesis of β -cedrene. Dokl. AN SSSR 139 no.2:363-366 J1 161. (MIRA 14:7)

1. Institut khimicheskikh nauk AN KazSSR. 2. AN KazSSR (for Goryayev). (Cedrene)

POTAPOV, V.M.; GORYAYEV, M.I., akademik; TOLSTIKOV, G.A.; TERENT'YEV, A.P.

Rotatory dispersion of cedrane series compounds. Dokl. AN SSSR
140 no.6:1341-1344 0 '61.

1. Moskovskiy gosudarstvennyy universitet im. M.V.Lomonosova. 2. AN Kazakhskoy SSR (for Goryayev). 3. Chlen-korrespondent AN SSSR (for Terent'yev).

(Cedrane)

(MIRA 14:11)

GORYAYEV, M.I., akalemik; TOLSTIKOV, G.A.

Structure of sabinene monohydrochloride. Dokl. AN SSSR 141 no.4: 855-856 D '61. (MIRA 14:11)

1. Institut khimicheskikh nauk AN KazSSR. 2. AN KazSSR (for Goryayev). (Thujene)

GORYAYEV, M.I.; TOLSTIKOV, G.A.

Study of the substances entering into the composition of essential oils. Part 2: Condensation of sabinene with diazoacetic ester.
Zhur. ob. khim. 32 no.1:310-312 Ja '62. (MIRA 15:2)

1. Institut khimicheskikh nauk AN Kazakhskoy SSR.
(Sabinene) (Acetic acid)
(Essences and essential oils)

RADAKOV, G.A.; GORYAYEV, M.I.; TOLSTIKOV, G.A.

Catalytic transformations of terpenes. Part 9: Isomerization of sabinene by means of metatitanic acid. Zhur. ob. khim. 32 no.1: 312-315 Ja '62. (MIRA 15:2)

1. Institut khimicheskikh nauk AN Kazakhskoy SSR. (Sabinene) (Titanic acid)

5/079/62/032/003/006/007 D204/D302

THE STATE OF THE S

AUTHORS:

Goryayev, M.I. and Tolstikov, G.A.

TITLE:

Study of compounds occurring in volatile oils. IV. Reduc-

tion of the C. -oxide of cedrene (A)

PERIODICAL:

Zhurnal obshchey khimii, v. 32, no. 3, 1962, 997-999

TEXT: Reduction of A with LiAlH₄ (in 300% excess) gave, after boiling for 24 hours, 35% of pseudocedrol and some isocedrenol. Catalytic hydrogenation of A on skeletal Ni gr Adams' Pt did not proceed at 40°C and atmospheric pressure. At 110°C and under a pressure of 130 atm of $\rm H_2$,

A yielded 66% of isocedranol. Full experimental details are given. There are 8 references: 6 Soviet-bloc and 2 non-Soviet-bloc. The reference to the English-language publication reads as follows: A. Moor, J.Am.Chem.Soc. 78, 1173, (1956),

ASSOCIATION:

Institut khimicheskikh nauk An Kaz. SSR (Institute of Chemi-

cal Sciences AS Kazakhskaya SSR)

SUBMITTED:

February 7, 1961

Card 1/1

TOLSTINGY, G.A.: GGENAYEN, M.I.: TOLSTINGYA, L.F.: KIM KYA OF

Preparation of tyrace on of glycychetic and elemenic acids.

Thur. ol. Phin. 34 m. 9:3133-3134 S 164.

(MIRA 17:11)

i. institut khimisheskikh mauk All Kazakhskoy SSE, laboratorii v g. Chimmente.

GORYAYEV, M.I.; IGNATOVA, L.A.; TOLSTIKOV, G.A.; DEMBITSKIY, A.D.

Chemicals constituents of essential oils. Part 13: Hydrogenation of 4-terpinenol and the synthesis of some amino derivatives of p-menthane. Zhur. ob. khim. 35 no.7:1186-1190 J1 '65.

(MIRA 18:8)

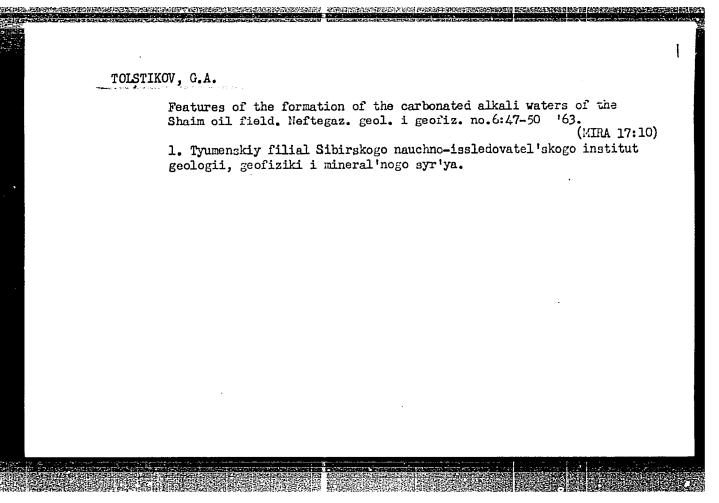
1. Institut khimii AN KazSSR.

IGNATOVA, L.A.; TOISTIROV, G.A.; LISHTVANGUA, L.B.; COPYLVEV, M.I.

Chemical composition of essential oil from Juniperus semiglobosa Egl.

Zhur. prikl. khim. 37 nc.6:1380.1391 Je 164. (MIRA 18:3)

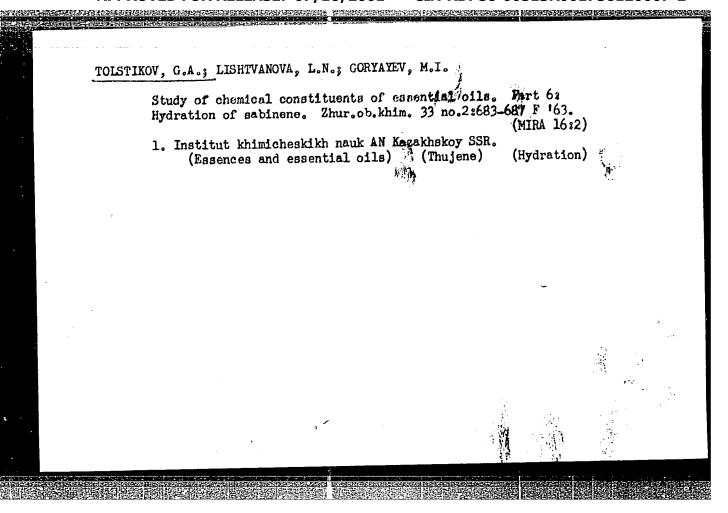
TOLSTIKOV, G.A.


Dynamics of the underground waters of the Mesozoic sediments of the Siberian portion of the Ural Mountain region. Neftegaz.geol. i geofiz. no.1:28-31 165.

1. Tyumenskiy filial Sibirskogo nauchno-issledovatel'skogo instituta geologii, geofiziki i mineral'nogo syr'ya.

TOLSTIKOV, G.A.

Hydrological conditions of the Ural Mountain oil and gas bearing region of the West Siberian Plain. Neftegaz, geol. i geofiz. no.10:46-49 '64 (MIRA 18:1)


l. Tyumenskiy filial Sibirskogo nauchmo~issledovatel¹skogo instituta geologii, geoflziki i mineral¹nogo syr¹ya.

TOIS TIKOV, G.A.; GORYAYEV, M.I.

Study of substances, constituents of etherial oils. Part 7:
Addition of carbon tetrachloride to sabinene. Zhur.ob.khim. 33
no.6:2061-2065 Je '63. (MIRA 16:7)

1. Institut khimicheskikh nauk AN Kazakhskoy SSR. (Thujene) (Carbon tetrachloride)

GCRYAYEV, M.I.; TOLSTIKOV, G.A.

Study of the constituents of essential oils. Part 5: Addition of elechols to sabinene. Zhir.ob.khim. 33 no.3:1031-1037 Mr '63. (MIRA 16:3)

1. Institut khimicheskikh nauk AN Kazakhskoy SSR. (Alcekols) (Thujene)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

GORYAYEV, M.I., akademik; TOLSTIKOV, G.A.; IGNATOVA, L.A.; DEMBITSKIY, A.D.

Natural f-cedrene. Dokl. AN SSSR 146 no.6:1331-1332 0 '62.

(MIRA 15:10)

1. Institut khimicheskikh nauk AN KazSSR. 2. AN KasZZR (for Goryayev).

(Cedrene)

GORYAYEV, M.I.; TOLSTIKOV, G.A.

Study of the chemical constituents of essential oils. Part 4: Reduction of cedrene A-oxide. Zhur.ob.khim. 32 no.3:997-999 Mr '62. (MIRA 15:3)

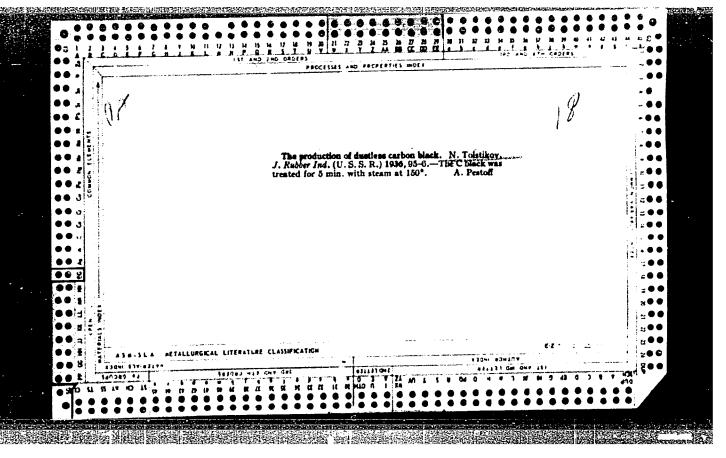
Steel Sale

1. Institut khimicheskikh nauk AN KazSSR. (Cedrene)

GORYAYEV, Mikhail Ivanovich, akademik; PLIVA, lozef. Frinimali uchastiye: TOLSTIKOV, G.A.; LISHTVANOVA, L.N.; GEROUT, V. [Heroit, V.]; KAYL, B.[Kejl, B.], doktor khim. nauk; NAVOTNYY, L. [Novotna, L.], doktor khim. nauk; GLAZYRINA, D.M., red.; ALFEROVA, P.F., tekhn. red.

> [Methods of studying essential oils] Metody issledovaniia efirnykh masel. Alma-Ata, Izd-vo Akad. nauk Kazakhskoi SSR, 1962. 750 p. (MIRA 15:7)

> 1. Institut khimicheskikh nauk Akademii nauk Kazakhskoy SSR (for Goryayev, Tolstikov, Lishtvanova). 2. Chleny-korrespondenty Akademii nauk Chekhoslovakii (for Pliva, Gerout). 3. Institut organicheskoy i biologicheskoy khimii Chekhoslovatakoy Akademii nauk (for Pliva, Gerout, Kayl, Navotnyy).

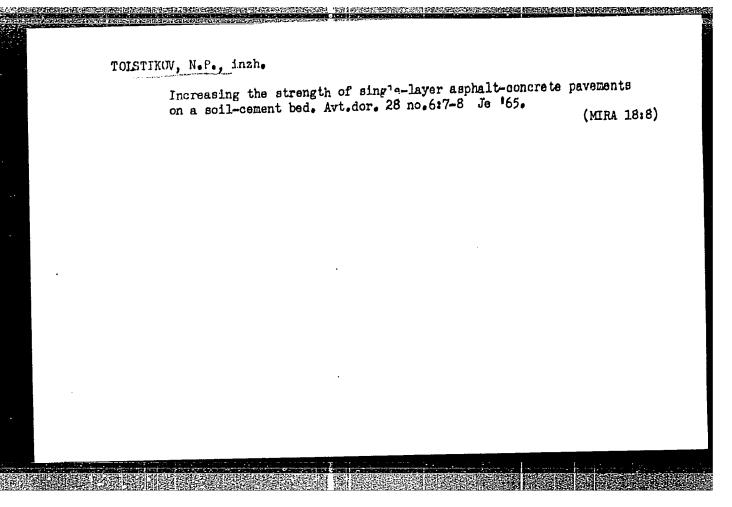

(Essences and essential oils)

CIA-RDP86-00513R001756120007-2" APPROVED FOR RELEASE: 07/16/2001

TOLSTIKOV, K.

Assault of the Angara River. Sov.foto. 19 no.8:4 Ag '59.
(MIRA 13:1)

1. Fotokorrespondent gazety "Izvestiya."
(Bratek Hydroelectric Power Station)
(Photography, Journalistic)


EYT'KO, Nikolay Dmitriyevich; PALEOLOG, G.D., retsenzent; TOLSTIKOV,
N.A., retsenzent; IVANOV, I.A., red.; VORONINA, R.K., tekhn.
red.

[Physics for secondary special correspondence schools] Fizika dlia zacchnykh srednikh spetsial'nykh uchebnykh zavedenii.

Moskva, Gos. izd-vo "Vysshaia shkola," Pt.1-2. [Mechanics.

Molecular physics and heat] Mekhanika. Malekuliarnaia fizika i teplota. 1961. 323 p. (MIRA 15:3)

(Physics)

Preventing de 27 My 163.	eformations of	culvert outlets.	Avt. dor. 26 no.5: (MIRA 16:7)
	(Gulverts)		

TOLSTIKOV, 0., general-polkovnik aviatsii

Develop the tactics of formations. Voen. znan. 41 no.6:2-3 Je '65.

(MIRA 18:5)

TOLSTIKOV, (), V.

: USSR/Aeronautics - history Subject

Card 1/1 Pub. 135 - 15/31

Author Tolstikov, O. V., Lt. General of air force and N. P.

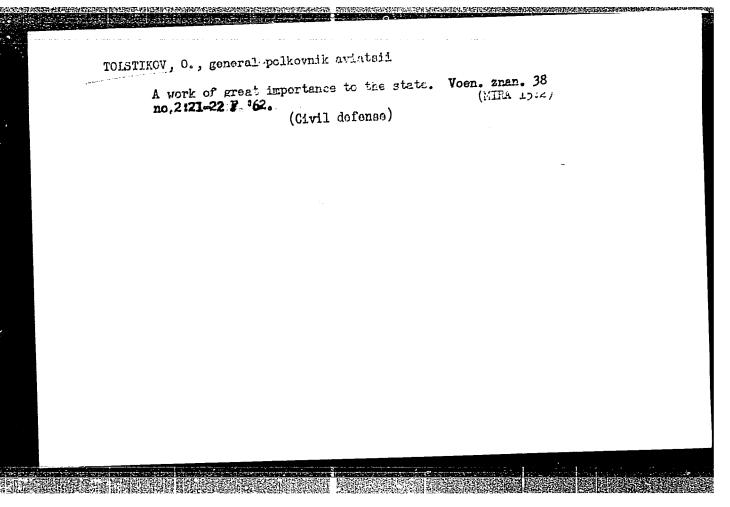
Dagayev, Lt. General of air force.

Title The forty-seventh air division in the battle of the

native capital.

Periodical : Vest. vozd. flota, 1, 65-69, Ja 1957

The carrying out of various missions by the 47th mixed air division (bombers, shturmoviks, and fighters) in the Abstract


battle of Moscow in 1941 are described in this article.

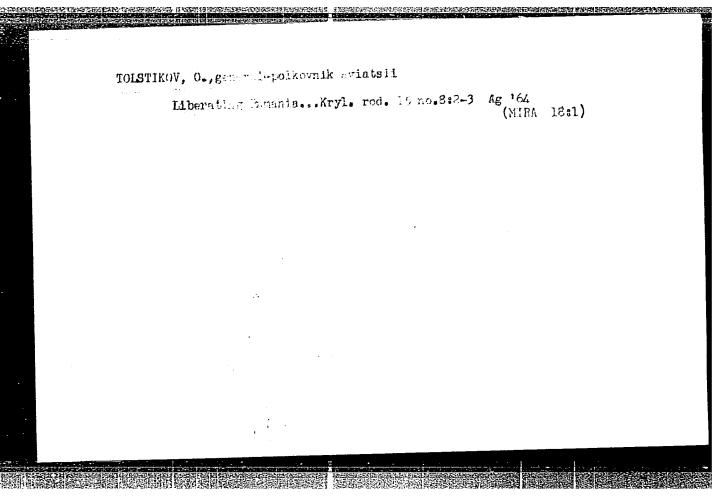
AID P - 5438

The article is of informative value.

Institution : None

Submitted : No date

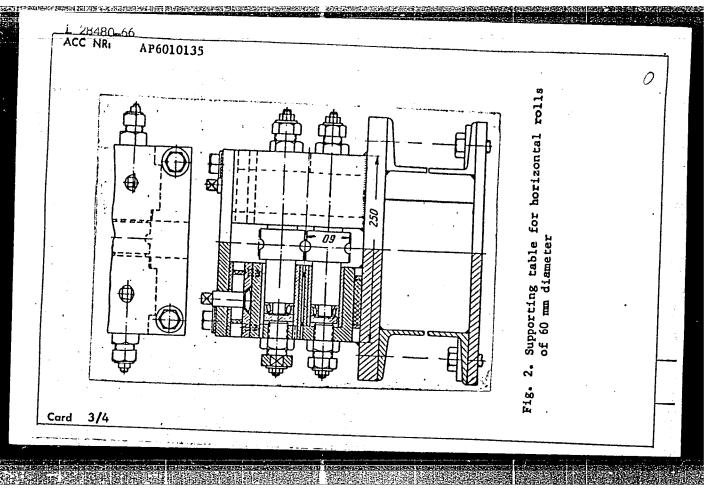
TOISTIKOV, O., general-polkovnik aviatsii


There must be an all-out improvement in the training of the people. Voen. znan. 39 no.4:33-34 Ap '63. (MIRA 16:6)

(Civil defense)

TOISTIKOV, O., general-polkovnik aviatsii

Greater discipline and business ability in the work of staffs.
Voen. znan. 40 no.8:1-2 Ag '64.


(MIRA 17:11)

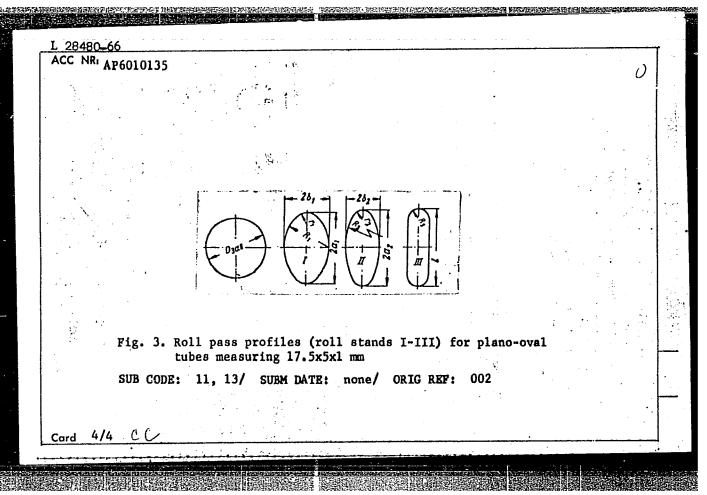

<u>L 2848C-66 EAF(k)/EWT(m)/T/EWP(v)/EWP(t)/EII JD/HM</u>
ACC NR: AP6010135 SOURCE CODE: UR/0133/66/000/003/0245/0248
AUTHOR: Matveyev, Yu. M. (Doctor of technical sciences); Grinberg, Z. A. (Engineer); Tolstikov, R. M. (Engineer); Gazman, S. M. (Engineer)
ORG: none β
TITLE: Radio-frequency welding of plano-oval radiant-heating tubes
SOURCE: Stal', no. 3, 1966, 245-248
TOPIC TAGS: generator. metal tube, induction welding, power welding equipment, welding technology / LZ-107 generator
ABSTRACT: Owing to a technological breakthrough at the <u>Pervoural'sk Tube Plant</u> induction welding of tubes of diameter smaller than 16 mm is now possible on an industrial scale. The techniques of this welding are described here for the production of radiant-heating tubes from circular skelp of 13.2 mm diameter, with wall thickness of 1 mm. A specially developed ferrite-core ring holder (Fig. 1) assuring a quick
replacement of ferrite-core sets is employed: it is very simple to construct and it assures an adequate cooling of the ferrite cores during the welding. (The ferrite-core rings are used to increase current concentration at the skelp edges.) The internal surface of the ferrite core rings is cooled with water entering via a 3-mm diameter capillary tubule and the external surface, with the water filling the tube. The
Card 1/4 UDC: 621.774.2

Fig. 1. Ferrite core holder	
250	_
and the second of the second o	
welding is performed at frequencies of 440 and 1000 cps (103 sec-1),	
77 107 Performed at Litequencies of 440 and 1000 cps (100 sec-1),	on using a 100-bed
IMPIUI PROPERTOT. IN addition a annaial ***********************************	on doing a roo-kw
(Fig. 2) to assure fixing the position of the deduction as the	n developed
(Fig. 2) to assure fixing the position of the inductor with respect t	n developed
welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve	n developed o the axis of stable welding
(Fig. 2) to assure fixing the position of the inductor with respect twelding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded plant	n developed o the axis of stable welding e for increasing
(Fig. 2) to assure fixing the position of the inductor with respect t welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded planthus obtained (Fig. 3) are greatly superior in quality to their resis	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded
(Fig. 2) to assure fixing the position of the inductor with respect t welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded planthus obtained (Fig. 3) are greatly superior in quality to their resis	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded
(Fig. 2) to assure fixing the position of the inductor with respect t welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded planthus obtained (Fig. 3) are greatly superior in quality to their resis	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded
(Fig. 2) to assure fixing the position of the inductor with respect t welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded planthus obtained (Fig. 3) are greatly superior in quality to their resis	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded
(Fig. 2) to assure fixing the position of the inductor with respect t welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded planthus obtained (Fig. 3) are greatly superior in quality to their resis	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded
(Fig. 2) to assure fixing the position of the inductor with respect t welding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded planthus obtained (Fig. 3) are greatly superior in quality to their resis	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded
(Fig. 2) to assure fixing the position of the inductor with respect twelding rolls. The LZ-107 100-kw induction welding generator assures rates of 45-55 m/min (72-92 cm/sec) and has a sufficient power reserve these rates to 60-65 m/min (100-108 cm/sec). The induction-welded plant	n developed o the axis of stable welding e for increasing no-oval tubes tance-welded

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

L 9034-66r(m)/EWP(k)/EWP(z)/EWA(c)/T/E	WA(d)/EWP(v)/FWD(+\/; z/.)
ACC NR: AP5023086 MJW/JD/HM/HW/WB	UR/0125/65/000/009/00 5/0066 UDK 621.791.762.621.9-462:669.14.0.13.3
AUTHOR: Grinberg, Z.A. (Engineer); Gazman, S.M. Pletnev, V.I. (Engineer)	
TITIE: Effect of cooling rate of seam on the c from Khl8NlOT steel	44, 55
SOURCE: Avtomaticheskaya svarka, no. 9, 1965,	13
TOPIC TAGS: metal welding, seam welding, pipe, cooling, cooling rate, corrosion, corrosion res	istance, weld heat treatment
ABSTRACT: The effect of intensive cooling was and thermal effect region with a sprayer installed pressure gas nozzle to provide a minimal file of the present the drawning of the provider.	lied inside the pipe together with a
removed through the thin wall of the case continuous which was diverted at a safe distance from the	nuously washed by a stream of water
ably reduces the number of rejects due to corrose intensive cooling to welding stainless with the	of the thermal effect region consider- sion, 2) it is advantageous to apply
or beam foot cooring can be e	expected in welding pipes whose wall
Card 1/2	

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

welding ion with rst Ura and weld we result tyle Pir
tyle Pip
tyle Pip
Ţ
, IE
.,

OSIPOV, V., inzh.; TOLSTIKOV, V., inzh.

New grinding machine. Mekh. stroi. 20 no.10:22 0 '63. (MIRA 16:10)

	是他是在第三世界的特殊的。 1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1980年,1	
1.		
	TOLSTIKOV, V.	
	Using sprayers for applying herbicides to flax fields. Tekh. v (MIRA 13:10) sel'khoz. 20 no.6:58-61 Je '60.	
	l. Vsesoyuznyy nauchno-issledovatel'skiy institut l'na. (Spraying and dusting equipment) (Herbicides) (Flax)	

TOLSTIKOV, V., komandir roty, starshiy leytenant; DUBININ, N., podpolkovnik; KOTEL'NIKOV, A., kapitan; SAVECHENKOV, leytenant;
SEROKHVOSTOV, N., komandir roty, gvardii kapitan; DEMIDOV, A.,
podpolkovnik; CHIRKOV, N., komandir roty, kapitan; DERZHANOVSKIY, S., komandir roty, gvardii kapitan; SOKOLOV, A.,
mladshiy serzhant

Solution of tactical problems published in no. 8. Voen.vest. 38 no.12:41-43 D '58. (MIRA 12:1)

TOLSTIKOV, V.A.; SHERMAN, L.Ye.; STAVISSKIY, Yu.Ya.

Measuring the capture cross sections of 5-200 Kev. neutrons for U²³⁸ and Th²³². Atom. energ. 15 no.5:414-415 N '63. (MIRA 16:12)

\$/194/62/000/004/089/105 D271/D308

Tolstikov, V. A. and Dashenkov, V. M.

AUTHORS: TITLE:

Measurement of electromagnetic fields in cavity resonators by the method of small disturbing body

Referativnyy zhurnal, Avtomatika i radioelektronika, no. 4, 1962, abstract 4zh245 (Uch. zap. Saratovsk.

PERIODICAL: un-t, 1960, 69, 274-284)

TEXT: The question whether it is feasible to determine the direction of E vector in cavity resonators by the method of small disturbing body, is theoretically treated and experimentally checked. Expression is derived for the fractional frequency variation of the resonator of, when the disturbing body is a homogeneous ellipthe resultator of, when the off and μ . The method is analyzed for soid with arbitrary values of $\mathcal E$ and μ . The method is analyzed for determining the direction of E by the dependence of of on the orientation of an ellipsoid of revolution (metallic or dielectric), relatively to the field. Direction distribution of E in a cylindrical resonator H₁₁₁ was experimentally investigated at about 800

Card 1/2

Measurement of electromagnetic ... S/194/62/000/004/039/105 D271/D308

Mc/s; divergence of averaged experimental data from the analytical values was no more than $\pm~0.5^{\circ}$. Abstracter's note: Complete translation.

Card 2/2

33001 s/641/61/000/000/028/033 B102/B138

26.2243

Card 1/2

Tolstikov, V. A., Stavisskiy, Yu. Ya.

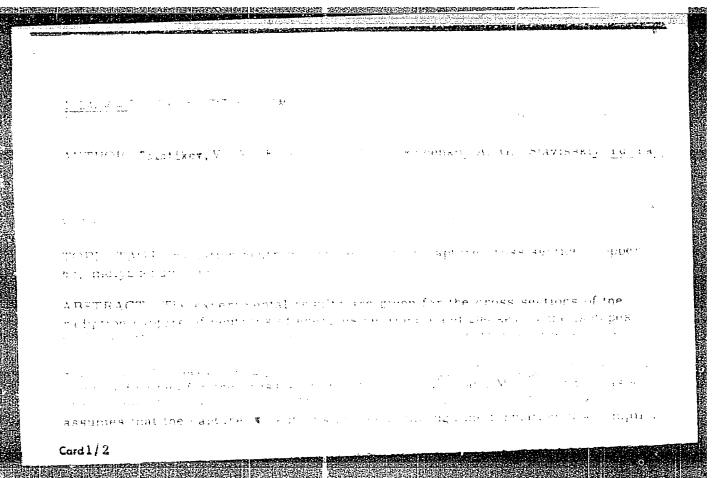
Fast neutron radiative capture cross sections of the Mo AUTHORS:

TITLE: isotope

Krupchitskiy, P. A., ed. Neytronnaya fizika; sbornik statey. Moscow, 1961, 312-313 SOURCE:

TEXT: The fast neutron radiative capture cross sections were measured with the activation method in the range 30 to 2100 kev for 100 neutrons were obtained from $T(p,n)He^3$ reactions, the protons being accelerated by a Van-de-Graff. The neutron energy spread was \pm 50 keV for the 400-2100 keV range (target at $\theta=0^\circ$ to the proton beam) and \pm 15 - \pm 30 kev for 30-400 kev (target at θ =100° to the proton beam). irradiation of the specimens with thermal neutrons was carried out in the thermal column of a fast research reactor. The radiative capture cross sections of J^{127} were used as reference values; for thermal neutrons σ_n , was taken to be 5.6 \pm 0.3 b for J^{127} and 0.20 \pm 0.05 b for Mo¹⁰⁰

CIA-RDP86-00513R001756120007-2" APPROVED FOR RELEASE: 07/16/2001


33001

Fast neutron radiative capture.

S/641/61/000/000/028/033 B102/B138

For fast neutrons the U²³⁵ cross sections were used as reference values. The root-mean-square measuring error was not greater than 1.5.2.5 %. In the range 30 kev & E < 170 kev the fast neutron radiative capture cross sections for Mo were found to drop monotonically from 85 to 35 mb; between 170 and 400 kev they remained almost constant, then decreasing again to 10 mb at 1200 kev. Between 1200 and 2100 kev the σ values remained at about 10 mb. Between 200 and 2100 kev the results are in good agreement with those of other researchers. Professor A I. Leypunskiy and 0. D. Kazachkovskiy, Doctor of Physical and Mathematical Sciences, are thanked for their interest, V. I. Zotova and V. F. Nedopekin for assistance. There are 1 figure and 10 references: 4 Soviet and 6 non-Soviet. The four most recent references to English-language publications read as follows: J. F. Vervier, Nucl. Phys. 9, 569, 1959; S. J. Bame. R. L. Cubitt, Phys. Rev. 113, 256, 1959; D. J. Hughes, R. B. Schwartz, Neutron Cross Sections, N.Y. USA, 1958; A. E. Jonsrud et al. Bull. Amer. Phys. Soc. Series II, 3, 165, 1958.

Card 2/2

1				
DI 24246-265 ACH INSTION INTO A CHARLEY				
pare made of the array galance	6 8	**	• • • •	11.4
And the second second				
SUBMITTED TOOLS	**********	* **:	$(\delta, \mathbf{v}_{i})_{i}(\mathbf{u}^{*}) = \mathbf{v}_{i}(\mathbf{v}_{i})_{i}$	
· .				

L 8687-65 ENT(m) SSD/AFVL MLK

ACCESSION NR: AT4048281

5/0000/64/000/000/0001/0004

AUTHOR: Stanjeskin Yn Val. Enlaenn V Val. Maly*ehan & V. Tolatikov, V. A.: Shapar , A. V.

【2等 5.4475 / 海拉5

TIPLE: Radiative capture of fast monoenergetic neutrons

SOURCE: Radiatsionny'y zakhvat by*stry*kh monoenergeticheskikh neytronov*

TOPIC TAGS: radiative capture, neutron capture, capture cross section, energy dependence

ABSTRACT: The authors report briefly on their recent measurements of the cross section for the radiative capture of several activating to the cross section for the radiative capture of several activating to the cross and rational resolutions. The sector dependence of the color of the cross and the cross section activation to the most part by the cross of the color of the cross and the cross section activation as a section of the cross section and the cross section activation and the cross section activation and the cross section activation acti

BENNESSER WERE REFERENCED TO SEE STATE OF THE SECOND SECON

L 8687-65 ACCESSION NR: AT4048281

0

scintillation counter (CaF₂ crystal). The accuracy of the activation method was within 5% and that of the gamma-ray method within 15%. The monochromatic neutrons were obtained with a Van de Graaff generator using the reactions T(p, n) and Li(p, n), which yielded neutrons with energies from 50 keV to 2.5 MeV and from 5 keV to 200 keV, respectively. The standard reactions used for comparison were the fission of U²³⁵, the B¹⁰(n, c) reaction, and I¹²⁷ capture. The values obtained for the cross sections were compared with those calculated from the statistical theory. The good agreement between theory and practice for the case of iron and Cu⁶⁵ confirms the systematics proposed for the parameters of the radiative capture cross sections proposed for the parameters of the radiative capture cross sections proposed for the parameters of the radiative capture cross sections proposed for the parameters of the radiative capture cross sections proposed for the parameters of the radiative capture cross sections were compared with those calculated proposed for the parameters of the radiative capture cross sections proposed for the parameters of the radiative capture cross sections were compared with those calculated proposed for the parameters of the radiative capture cross sections were compared with those calculated proposed for the parameters of the radiative capture cross sections were compared with those calculated proposed for the parameters of the radiative capture cross sections were compared with those calculated proposed for the parameters of the radiative capture cross sections were compared with those calculated from the capture cross sections were compared with those calculated from the capture cross sections were compared with those calculated from the capture cross sections were compared with those calculated from the capture capture cross sections were compared with the capture captur

SIBMITTEL. W

aNt. Dr 30

SUB COLF. HE

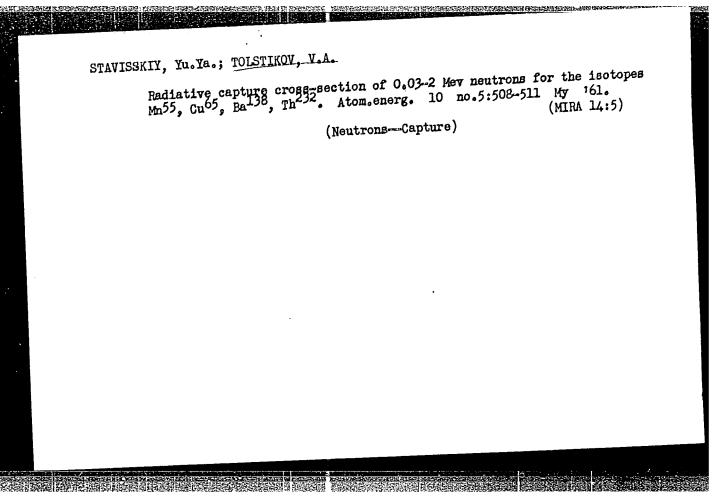
প্রত্যার বিশ্ব ১০০০

OTHER: 004

435 2/2

Calculating the neutron cross sections for tungsten with the aid of an optical nuclear model. Atom. energ. 11 no.1:56-58 Jl '61. (MIRA 14:7)			
	(Neutrons)	(Nuclear models)	
) :
			i de la composición del composición de la compos

TOLSTIKOV, V.A.; STAVISSKIY, Yu.Ya. [Cross sections of radiative capture of fast neutrons by the MolOO isotope] Secheniia radiatsionnogo zakhvata bystrykh neitronov izotopom MolOO. Moskva, Glav. upr. po ispol'zovaniiu atomnoi energii, 1960. 5 p. (MIRA 17:2)


CIA-RDP86-00513R001756120007-2" APPROVED FOR RELEASE: 07/16/2001

KALININ, V.I., prof., doktor fiziko-matem. nauk [deceased];
AKINDINOV, V.V.; GERSHTEYN, G.M.; DASHENKOV, V.M.; YEVSEYEV,
V.I.; IL'IN, V.S.; KOROSTELEV, G.N.; LUCHININ, V.D.; NAUMENKO,
Yu.P.; RYAZANOVA, T.P.; SEDIN, V.A.; TOLSTIKOV, V.A.; SHTYROV,
A.I.; AVILOV, B.I., red.; ZENIN, V.V., tekhn. red.

[Practical work in radio physics] Radiofizicheskii praktikum. Izd.2., dop. i perer. Saratov, 1961. 277 p. (MIRA 15:1)

1. Saratov. Universitet. 2. Kafedra radiofiziki Saratovskogo universiteta im. N.G.Chernyshevskogo (for all except Avilov, Zenin).

(Radio)

STAVISSKIY, Yu.Ya.; MOLSTIKOV, V.A.; KOKONOV, V.H.

Measurement of the radiative capture cross-sections of I¹²⁷ for fast neutrons. Atom. energ. 10 no.2:158-160 F '61. (HIRA 14:1) (Iodine) (Neutrons)

06337 SOV141-2-1-9/19

AUTHORS:

Dashenkov, V.M. and Tolstikov,

TITIE:

An Investigation of Resonance Phenomena in a System

of Distributed Coupled Lines

PERIODICAL:

Izvestiya vysshikh uchebnykh zavedeniy, Radiofizika,

1959, Vol 2, Nr 1, pp 73 - 83 (USSR)

ABSTRACT:

A system of n parallel coupled lines is considered which are loaded at their ends with arbitrary reactances. A formula is obtained for the input admittance of any line and an equation is found for the proper frequencies of the system. The arrangement studied is in Figure 1 and the voltage and current at a section x of the i-th

line is given by Eq (1). The input admittance is formally expressed as Eq (4) but the introduction of non-

dimensional parameters changes this to Eq (9). The proper

frequencies are found by equating the determinant of Eq (14) to zero but the general case is too unwieldy

and two special cases are treated:

1) The system consists of identical lines equidistant from one another and only adjacent lines are considered

coupled; Eq (14) then reduces to Eq (19), whose solution

Cardl/4

is Eq (20);

06337 SOV/141-2-1-9/19

An Investigation of Resonance Phenomena in a System of Distributed Coupled Lines

2) The system consists of n-l non-coupled identical lines, each of which, however, is coupled to the n-th line, which has different parameters. The solution to the determinant Eq (21) is Eq (22). When the n-th line is the same as the others, the solution is Eq (24). The experimental work has been carried out on lines shorted at one end and terminated in a capacitance at the other. The proper frequency of the lines was 79.3 Mc/s and the Q-factor about 300. Line length was 200 mm, line diameter 4 mm, line spacing 27 mm, capacitance load 18.6 pF. The source of excitation was the 102-I oscillator. Frequency could be measured to lin 104 mbs variation of reconstitutions. could be measured to 1 in 104. The variation of resonant frequency on coupling for numbers of lines from 2 to 6 was observed. Experimental data on 4 and 6 lines is shown dotted in Figure 2; the solid lines are from Eq (20). Good agreement was reached with 2 lines; for more lines there are considerable discrepancies. Better agreement is found when the more rigorous Eq (14) is used. An expression for the ratio of the currents at two resonances

Card2/4

06337

SOV/141-2-1-9/19

An Investigation of Resonance Phenomena in a System of Distributed Coupled Lines

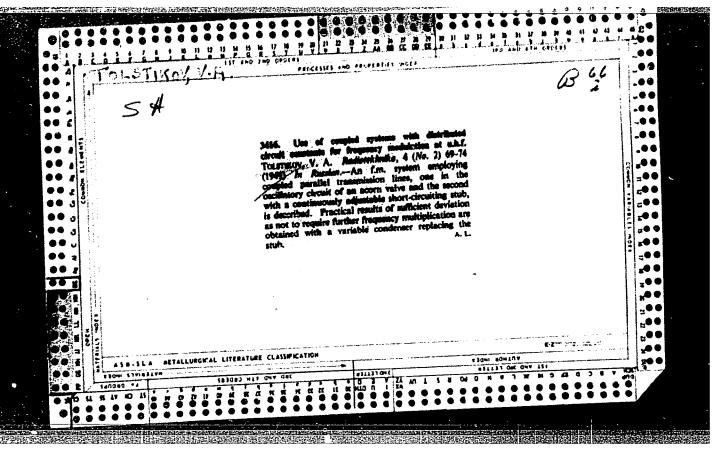
in the i-th line is Eq (25) and special cases of two lines are given by Eq (34) and of three lines by Eq (35). Experimental results for a two-line system are in Figure 3. The agreement with theory is good. For a three-line system the dependence of current ratios on coupling and frequency are plotted in Figures 4a, 5a, 6a and 7a. The resonant frequencies are in Figures 4b, 5b, 6b and 7b. Figures 4B, 5B, 6B and 7B are isometric resonance plots. These curves all refer to the 'first' line. Analogous results have been found for the 'second' and 'third' lines. An analysis of the results yields a recommended 6-stage tuning procedure to give the most symmetrical curve in the first line. Figure 8 shows the intermediate stages in obtaining the best response. V.I. Kalinin is thanked for his There are 8 figures and 11 references, 9 of which are Soviet, 1 German and 1 English.

Card3/4

06337 SUV/141-2-1-9/19

An Investigation of Resonance Phenomena in a System of Distributed Coupled Lines

ASSOCIATION: Saratovskiy gosudarstvennyy universitet (Saratov State University)


SUBMITTED: 1

November 13, 1957

Card 4/4

KONONOV, V.N.; STAVISSKIY, Yu. Ya. : TOISTIKOV, V.A.

Measurement of the cross section of radiation capture of 25kev neutrons. Atom. energ. 5 no.5:564 N '58. (MIRA 12:1) (Neutrons—Capture)

s/089/60/009/005/007/020 BO25/BO70

AUTHORS:

Stavisskiy, Yu. Ya., Tolstikov, V. A.

TITLE:

Radiative Capture Cross Sections of the Isotopes V51,

 $\frac{\text{Nb}}{19}$, $\frac{186}{19}$ and $\frac{\text{Tl}}{19}$ for Fast Neutrons

PERIODICAL:

Atomnaya energiya, 1960, Vol. 9, No. 5, pp. 401 - 403

TEXT: The object of the work was to measure the radiative capture cross sections of the isotopes mentioned in the title for neutrons of energies of 0.03 - 2.1 Mev. The source of neutrons was the reaction

 $T(p,n)He^3$ carried out in a Van de Graaff accelerator. The sample activation by neutrons of energies $E_n < 300$ kev was measured at an angle of 95° with the direction of the proton beam in the accelerator; for neutrons of energies $E_n > 300$ kev it was measured at an angle of 0°. The

error in neutron energy is due to the thickness of the tritium target, the geometrical dimensions of the sample, and the fluctuations in the accelerating voltage of the accelerator. For neutron energies of up to

Card 1/6

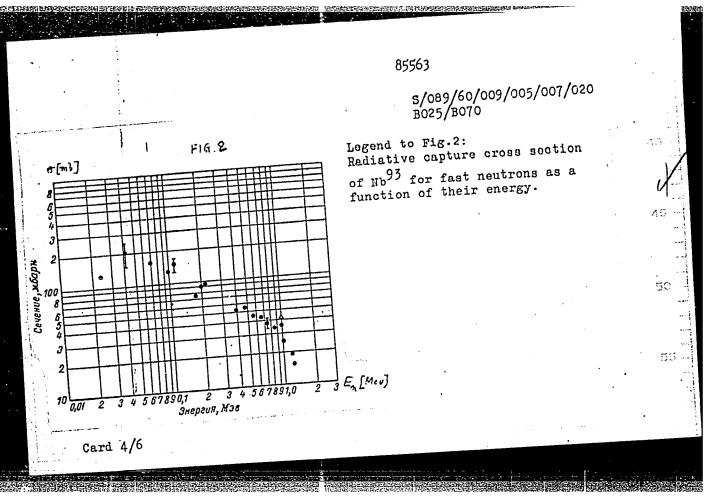
85563

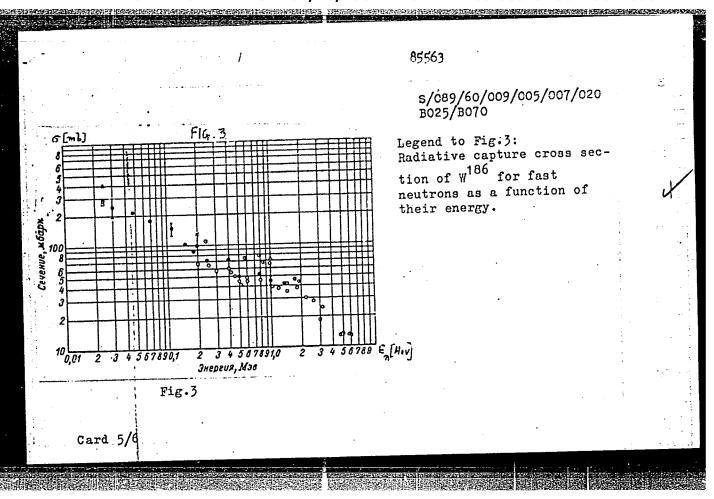
Radiative Capture Cross Sections of the Isotopes V^{51} , Nb^{93} , W^{186} , and $T1^{205}$ for Fast Neutrons

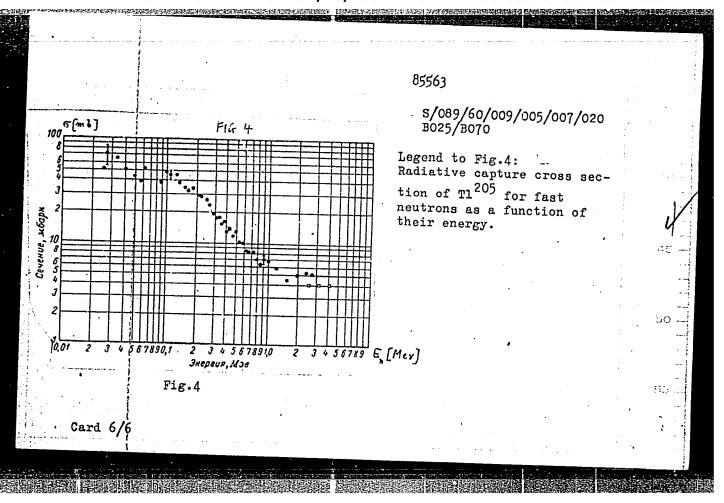

200 kev the error amounted to ± 12 - 20 kev; for higher energies it was ± 30 - 40 kev. Activation by thermal neutrons was carried out in the thermal column of a fast reactor. I¹²⁷ and U²³⁵ were used as standards for the cross section measurements by the method of relative activation. The results of measurement are represented in Figs. 1-4, their accuracy being 2 - 5%. For neutrons of energies higher than 150 kev the results for V⁵¹ and W¹⁸⁶ agree well with the measurements of Barshall; for Tl²⁰⁵ agreement is not so good. The capture cross section for Nb⁹³ is essentially equal to the production cross section of the isomer Nb^{94*}.

A. I. Leypunskiy, Member of the Academy of Sciences of the UkrSSR, and O. D. Kazachkovskiy, Doctor of Physical and Mathematical Sciences, are thanked for valuable discussions. There are 4 figures and 11 references: 4 Soviet and 7 US.

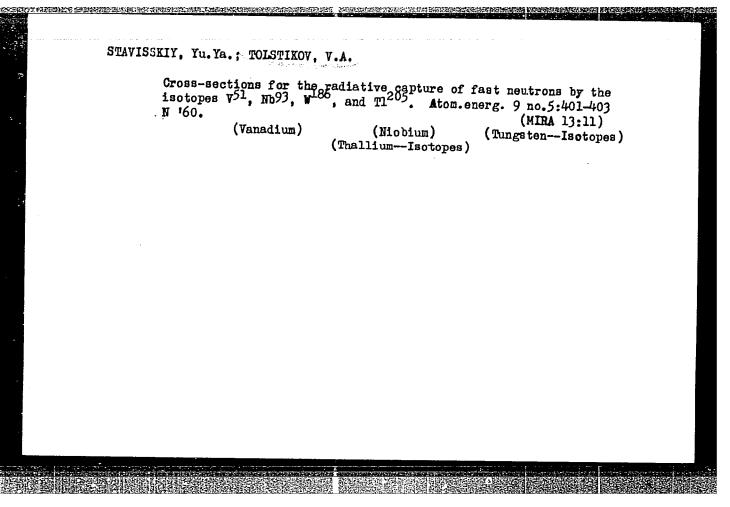
SUBMITTED: April 27, 1960


Card 2/6


APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"



APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"


"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

89358

s/089/61/010/002/008/018 B102/B209

26.2243 AUTHORS:

Stavisskiy, Yu. Ya., Tolstikov, V. A., Kononov, V. N.

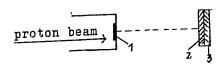
TITLE:

Measurement of the radiative capture cross section of fast

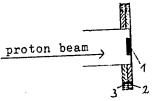
neutrons by I127

PERIODICAL: Atomnaya energiya, v. 10, no. 2, 1961, 158-160

TEXT: In activation measurements I 127 is suited as a standard; it has an apt half-life, sufficiently high radiative capture cross section, and a known thermal neutron capture cross section. Data on fast-neutron capture are not yet available and/or the existing data are erroneous or contradictory, particver available and/or one existing data are erroneous or contradictory, paraceularly in the range of 0.01 - 2.5 Mev. The authors measured (1958 - 1959) the energy dependence of the radiative capture cross sections for 0.02 - 2.5 Mev neutrons by means of the activation method. A U235 fission chamber and the I127 sample were simultaneously irradiated with a fast-neutron beam and the arising β -activity was measured with an end-window counter. The reactivity was measured with an end-window counter. tion T(p,n)He³ served as a source of fast neutrons. The arrangement of tritium target (1), I¹²⁷ sample (2), and fission chamber (3) was as follows:


Card 1/4

CIA-RDP86-00513R001756120007-2" APPROVED FOR RELEASE: 07/16/2001


89358

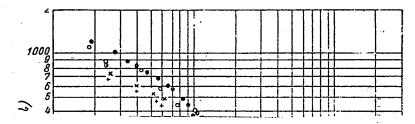
S/089/61/010/002/008/018 B102/B209

Measurement of the ...

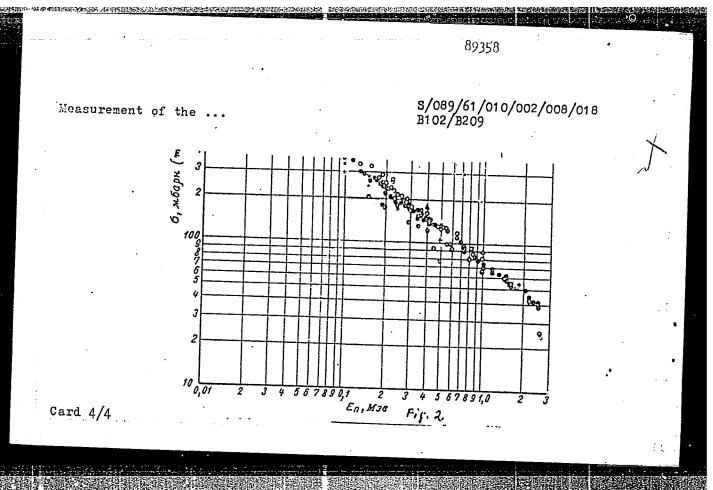
Irradiation by neutrons with energies > 300 kev

Irradiation by neutrons with energies <300 kev

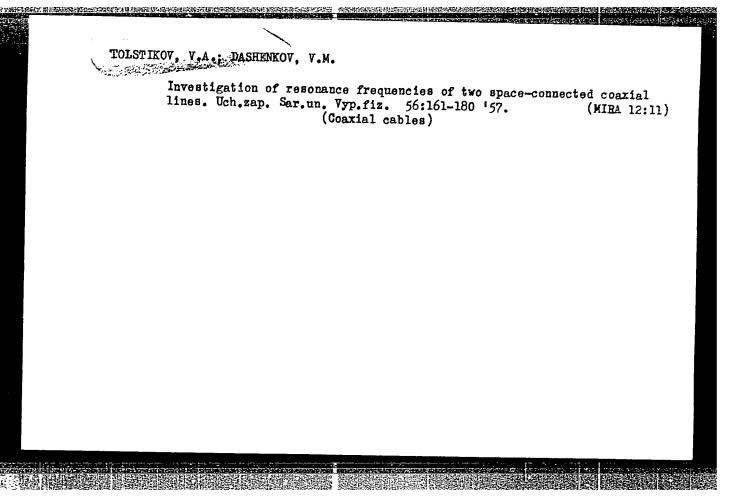
The measurements below 0 and 100° with respect to the proton beam direction lead to an "overlapping" of neutron energies; the agreement of the cross sections in this region proved the measurements to be reliable. The effect of the neutrons scattered from the walls was less than 0.3% and was determined from the deviation from the $1/R^2$ law. Standard measurements with thermal neutrons were carried out at the thermal column of a fast reactor. Activation cross section of 1127 by thermal neutrons was assumed to be 5.6 ± 0.3 b (according to Ref. 8), 1235 fission cross section to be 1227 by the cordination contains to be 1227 by the cordination cross section to be 1227 by the cross section cross section to be 1227 by the cross section cross section cross section to be 1227 by the cross section cross section to be 1227 by the cross section cros


Card 2/4

89358 \$/089/61/010/002/008/018 B102/B209


Measurement of the ...

Ref. 9). The error in the obtained value of the radiative capture cross section of I127 is, in essential, due to the U235 fission cross section error (12 - 25%). Fig. 2 shows a comparison between the results obtained by the present measurements (c) and those of other authors $(0,0,0,\times,\Delta,\mathbb{C},\Sigma,\Delta)$. The o curve drops monotonically with increasing En and may, within accuracy of measurement, be approximated through a $E^{-0.7}$ curve. In conclusion, the authors thank A. I. Leypunskiy, O. D. Kazachkovskiy, and V. S. Stavinskiy for their interest and discussions. There are 2 figures and 14 references: 5 Soviet-bloc and 9 non-Soviet-bloc.


SUBMITTED: July 14, 1960

Card 3/4

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

21(7) Stavisskiy, Yu. Ya., Tolstikov, V. A.

AUTHORS: The Measurement of the Cross Sections of the Radiative Capture

TITLE: of Fast Neutrons by Isotopes of Gallium

Atomnaya energiya, 1959, Vol 7, Nr 3, p 259 (USSR) PERIODICAL:

By comparison with the capture cross section of J^{127} the capture cross sections of Ga^{9} and Ga^{11} were measured. The ABSTRACT:

samples of the respective gallium isotope and the iodine

sample used for comparison were, at the same time, irradiated

by a fast neutron flux. The occurring β-activities were measured by means of an end-window-counter. After the decrease

sov/89-7-3-12/29

of β -activity, both samples were irradiated in a thermal

neutron flux and the occurring β -activities were newly measured. By comparison of the activities occurring in both cases, it was possible to calculate $\sigma x(n,\gamma)$. The protons accelerated in a Van de Graaf generator furnished the fast neutrons with

the aid of the reaction T(p,n)He3. Within the energy range of from 200 to 1400 kev, the neutron energy could be measured

with an accuracy of \pm 30 keV, and within the range of 1400 to 200 kev with an accuracy of + 50 kev. Irradiation with thermal neutrons took place in the thermal column of

the experimental fast reactor. In order to eliminate the Card 1/2

sov/89-7-3-12/29

The Measurement of the Cross Sections of the Radiative Capture of Fast Neutrons by Isotopes of Gallium

influence of resonance—and fast neutrons, the "cadmium" method was employed. The results obtained are shown graphically. In the case of Ga⁶⁹ a smooth dependence of the capture cross section on neutron energy is found, whereas in the case of Ga⁷¹ a sharper decrease is observed in the neighborhood of 550 kev. This is probably due to the inelastic scattering of neutrons on the levels 510 and 610 kev of Ga⁷¹. There are 1 figure and 3 references, 1 of which is Soviet.

SUBMITTED: March 26, 1959

Card 2/2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001756120007-2"

SOY/112-59-5-9917

9(0)

Translation from: Referativnyy zhurnal. Elektrotekhnika, 1959, Nr 5, p 212 (USSR)

AUTHOR: Tolstikov, V. A.

TITLE: Calculating Resonant Frequencies and Some Applications of Two

Space-Coupled Two-Wire Lines

PERIODICAL: Uch. zap. Saratovsk. un-t, 1957, Vol 56, pp 146-160

ABSTRACT: A system comprising two space-coupled (parallel) two-wire lines is considered. Expressions for currents and voltages in a no-loss line derived by A. A. Pistol'kors are used as initial equations for computing resonant frequencies. The resonant frequency of coupled lines is calculated for certain loads. Use of coupled lines for capacitance and impedance measurements is considered.

S.I.S.

Card 1/1

SOV/112-59-1-2006

Translation from: Referativnyy zhurnal. Elektrotekhnika, 1959, Nr 1, p 289 (USSR)

AUTHOR: Tolstikov, V. A., and Dashenkov, V. M.

TITLE: Investigation of Resonant Frequencies of Two Coaxial Lines With a Distributed Coupling

PERIODICAL: Uch. zap. Saratovskiy un-t, 1957, Vol 56, pp 161-180

ABSTRACT: A theoretical calculation and experimental investigation of the resonant frequencies of two mode-TEM coaxial resonators are reported. There is a distributed coupling - via a longitudinal slot - between the resonators. A set of two charged cylinders over an infinite conducting plane has been obtained by means of three conformal mappings; the infinite conductive plane is replaced by mirror images of the cylinders. Electrical axes of the cylinders are found, up to the n-th order, by a method of successive mirror images on condition that the cylinder surfaces are equipotential. Characteristic impedances of the set are determined, taking into

Card 1/2

CIA-RDP86-00513R001756120007-2" APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001756120007-2 "APPROVED FOR RELEASE: 07/16/2001

SOV/112-59-1-2006

Investigation of Resonant Frequencies of Two Coaxial Lines With a Distributed . account the axes up to the second order inclusive. Resonant frequencies of the set are calculated. The experiment has satisfactorily confirmed calculations.

A.M.R.

Card 2/2

CIA-RDP86-00513R001756120007-2" **APPROVED FOR RELEASE: 07/16/2001**